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Temporal linear stability modes depending on two space directions are computed for
a two-dimensional boundary-layer flow along a flat plate. The spatial structure of each
individual temporally stable mode is shown to be reminiscent of the spatial exponential
growth of perturbations along the flat plate, as predicted by local analyses. It is
shown using an optimal temporal growth analysis, that an appropriate superposition
of a moderate number of temporal modes gives rise to a spatially localized wave
packet, starting at inflow and exhibiting transient temporal growth when evolving
downstream along the plate. This wave packet is in qualitative agreement with the
convectively unstable disturbance observed when solving the Navier–Stokes equations
for an equivalent initial condition.

1. Introduction
The classical approach when considering hydrodynamic linear stability of weakly

non-parallel open flows is to use the locally parallel flow assumption in the
downstream direction and stability modes depend only on one space variable, the
wall-normal direction. An exhaustive review of the dynamics that may be extracted
from local analyses can be found in Huerre & Monkewitz (1990). Weakly non-parallel
analyses may however fail when flow disturbances have length scale comparable with
that of the basic flow. A separation of variables in the linear stability equations is
then questionable and modes have to be considered which depend on both the wall-
normal and streamwise direction. The resulting large numerical matrix eigenvalue
problem becomes much less tractable. A way to overcome this difficulty is to use the
time-marching algorithm for solving the Navier–Stokes system to compute the linear
evolution of the disturbance about the basic flow, together with a Krylov subspace
method (Edwards et al. 1994), which allows computation of a significant part of
the spectrum. This approach has for instance been applied by Barkley, Gomes &
Henderson (2002) to compute global critical eigenmodes localized in the separation
bubble for highly non-parallel backward-facing step flow at moderate Reynolds
numbers. With increasing computer capacities, the more direct approach of computing
two-dimensional disturbance modes as matrix-eigenmodes of the discretized linearized
Navier–Stokes equations is now feasible and has been applied with success for
instance to wall-bounded flows by Lin & Malik (1997) who considered a non-parallel
attachment-line boundary layer, or to separated recirculation bubbles in the work
of Theofilis, Hein & Dallmann (2000). A recent review, with numerous references
therein, of the state of the art concerning global linear instability analyses and the
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different ways to numerically determine temporal modes depending on more than
one space variable has been given by Theofilis (2003).

Two-dimensional temporal modes are expected to remain relevant even when the
flow is only mildly non-parallel, as a consequence of the peculiar non-normality
associated with their advection (see Chomaz 2005 for a review). Considering the
model problem of the Ginzburg–Landau operator with spatially varying coefficients,
Cossu & Chomaz (1997) have demonstrated that the non-normality of the streamwise
global eigenmodes may lead to transient growth, which can be interpreted in terms of
local convective instability. In this context, the one-dimensional global modes in the
streamwise inhomogeneous direction can be viewed as models of the two-dimensional
temporal global modes considered in the present paper. More recently, this idea
has been applied to the stability of a falling liquid curtain modelled as a partial
differential system with one inhomogeneous space variable by Schmid & Henningson
(2002). An optimal superposition of temporal global modes reproduces the unstable
wave packet evolving through the curtain, close to experimental observations. In the
present investigation, we readdress the possibility of triggering convectively unstable
wave packets using temporal two-dimensional modes. The flat-plate boundary layer
is considered, as the archetype of a non-parallel wall-bounded shear flow.

2. Mathematical formulation and solution procedure
The basic flow state along a flat plate has been computed using the two-dimensional

Navier–Stokes system, using a fourth-order finite-difference discretization in the
streamwise x-direction and Chebyshev-collocation in the wall-normal y-direction.
The underlying algorithm has been described in Marquillie & Ehrenstein (2003). The
reference length is the displacement thickness δ∗

i at inflow x∗
i , the Blasius profile

providing the inflow condition for the Navier–Stokes integration, and the uniform
velocity U ∗

∞ at y → ∞ is the reference velocity. The Reynolds number hence is written

Re =
U ∗

∞δ∗
i

ν∗ = γ

√
U ∗

∞x∗
i

ν∗ , γ = 1.7208, (2.1)

the viscosity being ν∗. Basic states (U (x, y), V (x, y)) have been computed for inflow
Reynolds numbers of Re = 610 and Re = 780 above the critical Reynolds number
Rec ≈ 520 for the Blasius profile, in the domain xi � x � xo and 0 � y � ymax with
ymax → ∞. The length of the domain in the streamwise direction in the simulation
was xo − xi = 600 with a finite-difference discretization of Nx = 3000 points. In the
wall-normal direction an algebraic transformation has been used with ymax = 80 and
Ny = 100 Chebyshev-collocation points for discretization.

Once a steady state U(x, y) = (U (x, y), V (x, y)) is obtained, the Navier–Stokes
system is linearized, considering a disturbance in the flow field and pressure

u(x, y, t) = û(x, y) e−iωt , p(x, y, t) = p̂(x, y) e−iωt , (2.2)

where û(x, y) = (û(x, y), v̂(x, y)), a solution of the partial differential system

−(U · ∇)û − (û · ∇)U − ∂p̂

∂x
+

1

Re
∇2û = −iωû, (2.3)

−(U · ∇)v̂ − (û · ∇)V − ∂p̂

∂y
+

1

Re
∇2v̂ = −iωv̂, (2.4)

∇ · û = 0. (2.5)
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The type of discretization used to recover the basic state when solving the Navier–
Stokes equations is of course not suitable for solving the stability system (2.3)–
(2.5): the resulting matrix-eigenvalue problem would be enormous. Since the use of
Chebyshev polynomials provides the most efficient expansion of regular functions in
terms of polynomials (Peyret 2002), we have considered an interpolation of the basic
flow state and its derivatives on a Chebyshev-collocation grid in both space variables,
in order to solve the stability problem in the domain 0 � x � L, 0 � y � H , where
we place the inflow at x = 0 for convenience. The collocation points are defined in
[−1, 1] × [−1, 1] and a simple linear stretching of the variables has been considered
to map the physical domain into the computational one.

2.1. Boundary conditions

The upper limit H in the wall-normal variable has been chosen to be H =15, that is
15 times the displacement thickness at inflow. One may hence be confident that the
disturbance flow velocity field vanishes at this height y = H and at the wall y =0 the
no-slip condition applies.

Physical meaningful in- and outflow conditions however are not straightforward.
Dirichlet-type or Neumann-type boundary conditions apply when global modes are
spatially localized. Here, the basic flow field is locally unstable over the whole domain
and the disturbance mode structure will extend from inflow to outflow boundaries.
Conditions which match approximations of the local dispersion relation at inflow and
outflow appear to be more appropriate for the present case. The local profile at inflow
is the Blasius profile and the local dispersion relation α(ω), under the locally parallel
flow assumption, can easily be determined by solving the Orr–Sommerfeld-type one-
dimensional stability equation: the mode then is written u(x, y, t) = û(y) ei(αx−ωt). At
inflow the Reynolds number Re of the global stability analysis is to be considered
whereas at outflow x =L the local stability analysis, using the Blasius profile, has to
be performed at

ReL = Re

√
1 +

γ 2L

Re
(2.6)

by (2.1), when considering the boundary-layer similarity solution for the local analysis.
The streamwise derivative of the global mode is matched with the local analysis at
inflow and ouflow through the Robin boundary condition

∂u
∂x

= iαu. (2.7)

The local dispersion relation D(α, ω) = 0 provides a nonlinear relationship between
the complex wavenumber and frequency. First, a real frequency ω0 is chosen within
the unstable frequency range at inflow as well as outflow and the local spatial
stability analysis is performed. A linear approximation is then given by a Gaster-type
transformation (Gaster 1962)†

α ≈ α0,r +
∂αr

∂ωr

(ω0) (ω − ω0) · · · (2.8)

which is justified as long as the imaginary parts of α and ω are small. Indeed, the
results below (cf. figure 1) justify this hypothesis a posteriori. It appears that the

† Note that the reference time being δ∗
i /U ∗

∞, the local frequency ωL = (ReL/Re)ω is to be
considered at outflow.
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results are essentially independent of the precise value ω0. This finally leads to

−c0

∂u
∂x

− i(ω0 − c0 α0,r )u = −iωu with c0 =
1

(∂αr/∂ωr )(ω0)
(2.9)

at inflow x =0 and outflow x = L.
Concerning the pressure, its value on the boundary is given implicitly through

the incompressibility condition (2.5) which is imposed in the interior of the domain
as well as on the boundary. Spurious pressure modes, making the left-hand side of
(2.3)–(2.5) singular, are inherent when a Chebyshev–Chebyshev discretization is used
in a rectangular box (Peyret 2002). Once the four corner points are eliminated, there
remain four spurious pressure modes, which are dealt with by prescribing explicit
boundary conditions for the pressure on four points on the upper and lower boundary
immediately adjacent to the corners. Since the pressure is defined up to a constant,
one of these points is used to fix this constant. Homogeneous Neumann boundary
conditions are imposed at the three remaining points. Indeed, at y = H and y =0,
this condition provides a meaningful approximation of (2.3), (2.4) since the advective
terms vanish and the diffusive terms are effectively small at the Reynolds numbers
considered.

2.2. Eigenvalue solver

Despite the interpolation procedure, the generalized matrix eigenvalue problem
obtained after interpolation consists of up to 25 000 complex equations which is
still too large to be solved by standard QZ algorithms. The eigenvalue problem
obtained after discretization may be written formally as

Az = −iωBz, (2.10)

the vector z containing the disturbance flow velocity and pressure. Krylov subspace
projections provide the possibility of recovering most of the spectrum using the
‘shift and invert’ strategy. Details of the method are given for instance in Nayar &
Ortega (1993) and the usefulness of this approach for global hydrodynamic stability
analyses is discussed in Theofilis (2003). The complexity reduces to the computation
of the Krylov subspace together with the Arnoldi algorithm applied to the eigenvalue
problem

(A − λB)−1 Bz = µz, with µ =
1

−iω − λ
. (2.11)

However, this does not necessitate the inversion of a matrix operator. Indeed, the
Krylov subspace may be computed by a successive resolution of linear systems
with matrix (A − λB), using an LU decomposition, which is achievable even for
a very large matrix. The algorithm leads to an m × m matrix whose eigenvalues
approximate those of (2.11). A large part of the spectrum can be recovered with great
accuracy when considering a large Krylov subspace. Here, we considered reduced
systems, the eigenvalues being determined using a QZ-algorithm, with up to m =800
equations. The operator is shifted in order to provide the spectrum in a quite large
neighbourhood of the shift parameter λ. In most of the computations we set λ=0.
Given the large Krylov subspace we considered, the part of the spectrum relevant for
our analysis could be recovered in one computation which took about 2 hours CPU
on the NEC/SX5 (the code running at 3.3 Gflops).
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Figure 1. Eigenvalue spectrum in the (ωr, ωi)-plane for different Reynolds numbers and plate
lengths. +, Re = 610 and L = 230; ×, Re= 610 and L =345; ∗, Re =610 and L = 460; �,
Re =780 and L =460. The eigenmodes associated with the eigenvalues indicated by vertical
arrows are depicted in figure 2.

3. Two-dimensional temporal modes and their superposition
For the two Reynolds numbers Re= 610 and 780 considered in the present analysis

it has been checked that a Chebyshev-collocation discretization with nx = 180 points
in x and ny = 45 points in y gives reasonably converged results when performing
the global stability analysis for a domain length L up to L =460. For the boundary
conditions (2.9) at inflow and outflow, the expansion has been performed at ω0 = 0.08.
The results proved to be quite insensitive to this parameter.

3.1. Spectrum

Several families of eigenvalue spectra are depicted in figure 1. From the spectrum
obtained from the algorithm, the eigenvalues with highest imaginary parts, that is
the least stable ones, are selected and a check of the two-dimensional mode structure
allows elimination of spurious modes. It is seen that the individual global modes
are stable with negative imaginary parts of ω as expected, the flat-plate boundary
layer being convectively unstable. For the spectrum at Re = 780 and with L = 460,
the eigenmode structures for the modes with ωr ≈ 0.03 and ωr ≈ 0.1 (marked with
arrows in figure 1) are shown in figure 2. To better reveal the structure the aspect
ratio between the x- and y-coordinates has been modified and the domain limited to
160 � x � 460 and 0 � y � 12. Isolines of the real part of the streamwise component
û(x, y) are depicted and the perturbation is seen to evolve in the vicinity of the wall,
with increasing amplitudes when progressing downstream. The typical length scale of
the cellular mode structure decreases with increasing frequency, which introduces a
cut-off in frequency for the spectrum.

The spectra shown in figure 1 are discrete, the separation between two successive
frequencies being quite regular within each family of modes. To quantify this
discretization of modes, for Re= 610 three different domain lengths have been
considered with L1 = 460, L2 = 345 and L3 = 230. Measuring the gap between two
successive frequencies in the vicinity of ωr =0.04 (cf. figure 1), one finds respectively for
decreasing L, d1 = 0.0052, d2 = 0.0071 and d3 = 0.011 and hence d2/d1 ≈ 1.36 ≈ L1/L2,
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Figure 2. Isolines of the real part of û(x, y) of the two eigenmodes associated with the
eigenvalues marked with arrows in figure 1 with (a) ωr ≈ 0.03; (b) ωr ≈ 0.1.

as well as d3/d1 ≈ 2.1 ≈ L1/L3. This kind of mode separation is believed to be due
to the pressure. Indeed, taking into account the incompressibility condition, one may
form a Poisson equation for the pressure by applying the gradient to equations (2.3),
(2.4), the boundary condition of which being implicitly related to the incompressibility
condition on the boundary. The resulting compatibility condition between inflow and
outflow through the pressure discretizes the frequencies proportionally to 1/L, the
proportionality factor varying due to non-parallel effects.

The spatial structure of the two-dimensional temporal modes exhibits a growth in
amplitude when progressing downstream, which may be quantified by computing

A(x) =

√∫ H

0

(û∗(x, y)û(x, y) + v̂∗(x, y)v̂(x, y)) dy, (3.1)

where ∗ denotes the complex conjugate. This spatial growth may be compared to the
amplitude growth due to convective instability, as predicted by the locally parallel flow
assumption. The complex wavenumber αx is computed as function of the complex
frequency at successive streamwise locations x. The Blasius profile is used for the
one-dimensional stability problem, with the local Reynolds numbers Rex as given
by (2.6) with x instead of L and the local dimensionless frequency is ωx = ωRex/Re.
Neglecting the distortion of the wall-normal mode structure along x according to the
so-called eN method, integration of this factor provides the amplitude growth

A(x)

A(0)
= exp

(∫ x

0

−αi,x dx

)
. (3.2)

The comparison between the streamwise global mode growth and the locally parallel
flow prediction has been performed at two frequencies ω = 0.031 − i 0.0048 and
ω = 0.104 − i 0.0077 marked with arrows in figure 1. The corresponding A(x)/A(0)
are compared in figure 3. The trends are the same for both the global-mode structure
and the locally parallel approximation, which means that the two-dimensional mode
structure is reminiscent of the spatial convective instability as given by local spatial
instability theory.

3.2. Mode superposition and wave packet

The individual two-dimensional modes are stable but an appropriate superposition
may exhibit a transient growth, the modes being non-normal. This type of behaviour
was observed by Cossu & Chomaz (1997) when considering one-dimensional
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Figure 3. Normalized amplitude A(x)/A(0) as function of the streamwise distance x of the
two eigenmodes depicted in figure 2. Dotted-dashed line: mode in figure 2(a); continuous line:
mode in figure 2(b). Comparison with the weakly non-parallel estimation (3.2) (dotted and
dashed lines respectively).

streamwise modes associated with a model Ginzburg–Landau equation as a typical
amplitude equation. Here, in the two-dimensional temporal setting, the energy growth
of the perturbation u(x, y, t) = (u(x, y, t), v(x, y, t)) is

E(t) =

∫ L

0

∫ H

0

(|u|2 + |v|2) dy dx. (3.3)

According to Schmid & Henningson (2001), the perturbation is sought as a linear
superposition of the two-dimensional temporal modes

u(x, y, t) =

N∑
k=1

αk(t)ûk(x, y). (3.4)

The maximum of the energy at time t as function of all possible initial conditions is
provided by

max
αk (0)

E(t)

E(0)
= ||F exp(tD)F−1||2 = G(t) (3.5)

with M = FH F the Cholesky decompostion of the Hermitian matrix M with entries

Mij =

∫ L

0

∫ H

0

(û∗
i ûj + v̂∗

i v̂j ) dy dx. (3.6)

The diagonal matrix D contains the global eigenvalues and αk(t) = exp(−iωkt)αk(0)
(see Schmid & Henningson 2001 for details). For both Reynolds numbers Re= 610
and 780, the spectrum for L =460 has been considered, depicted as stars and triangles
in figure 1, with respectively 20 and 22 eigenvalues. The complex conjugate eigenvalues
σ ∗ =ωi − iωr , together with the complex conjugate eigenmodes, are to be considered
as well, hence N = 40 and N =44 has been taken in (3.4) for Re = 610 and Re = 780,
respectively. The quantity G(t) is depicted in figure 4 and while the result for Re= 610
only predicts a weak transient growth, at the higher Reynolds number Re = 780 the
envelope reaches a peak at t = 800 with G(t) ≈ 7.

In order to analyse the spatio-temporal development of optimal perturbations, the
optimal initial condition for Re = 780 is determined at t = 800 and the perturbation
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Figure 4. Optimal growth of the energy G(t) =E(t)/E(0) as a function of time horizon t
for Re= 610 and 780. The effective time-evolution of optimal perturbations for various time
horizons is also plotted for Re= 780.
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Figure 5. Spatio-temporal evolution of the wave packet associated with the optimal
perturbation for t = 800 (Re=780). Isolines of the real part of û(x, y) in the region 0 < x < 350
and 0 < y < 12 at various times. At each time, 20 equidistant levels have been considered,
ranging from the minimum to the maximum value.

u(x, y, t) is easily computed through (3.4). The corresponding wave packet is shown
in figure 5. The linear combination of the mode structures is shown to trigger a
wave packet localized in space and moving along the plate for increasing time.
Figure 5 demonstrates that the amplifying behaviour of the convectively unstable
two-dimensional flat-plate boundary layer can be captured by a suitable superposition
of two-dimensional temporal global modes, as suggested by the model analysis of
Cossu & Chomaz (1997). Although the amplitude of the two-dimensional temporal
modes is maximal near the outlet (see figure 2 and figure 3), their resulting non-
orthogonal superposition produces a wave packet initially localized close to the inlet
which grows in time and moves in space according to the phases of the individual
modes, but ultimately decays as time increases and the wave packet leaves the
domain. In figure 6(a), which depicts the spatio-temporal evolution of the perturbation

amplitude with ||u||(x, t) = (
∫ H

0
(u2 +v2) dy)1/2, the dashed-dotted curve at time t =800

further shows that the outflow boundary treatment described in § 2.1 is appropriate,
letting the wave packet smoothly leave the plate.
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Figure 6. Spatio-temporal evolution of the wave packet amplitude triggered by the linear
optimal perturbation for t = 800 at t = 0 (solid line), t =200 (dashed line), t = 400 (dotted line)
and t =800 (dashed-dotted line). The time evolution is provided by the linear superposition of
the global modes in (a) and by the DNS in (b).

To interpret the wave train as a genuine perturbation for the flat-plate boundary-
layer flow, the initial condition t =0 as provided by the analysis and depicted at the
top of figure 5 has been superimposed on the basic state at Re = 780 and injected
as initial condition with small amplitude into the Navier–Stokes solver. To compare
the evolution at successive times, the amplitude ||u||(x, t) has been computed along
the plate and the comparison between the wave train as given by the perturbation
expansion (3.4) and the disturbance provided by time integration of the Navier–
Stokes system is depicted in figure 6. In the latter case the perturbation has been
computed, subtracting from the instantaneous flow field the steady state at Re = 780.
The wave train evolution compares quite well, the initial amplitude being chosen
such that nonlinear effects when solving the full Navier–Stokes system are small. This
comparison demonstrates that a perturbation expansion using the two-dimensional
temporal mode analysis is reminiscent of the convective-type instability evolution.

4. Final remarks
It has been demonstrated that a finite number of two-dimensional temporal modes

is capable of capturing the convective instability behaviour of the flat-plate boundary-
layer. The associated weak transient temporal growth is of a different nature to the
strong lift-up effect characteristic of wall-normal non-normality. Here, it is instead
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triggered by the streamwise non-normality and the analysis provides a real flow
example of what has been demonstrated so far for inhomogeneous one-dimensional
model equations (Cossu & Chomaz 1997; Schmid & Henningson 2002). There is hence
some evidence that a moderate number of two dimensional modes may reproduce the
perturbation dynamics in wall-bounded open flows: this provides new possibilities for
model reduction with flow-control applications.

We would like to acknowledge Carlo Cossu for enlightening discussions. We thank
the anonymous referees for their advice concerning the wave packet simulation. The
computations have been performed on the IDRIS NEC/SX5 under Grant 4055.

REFERENCES

Barkley, D., Gomes, M. & Henderson, D. H. 2002 Three-dimensional instability in flow over a
backward-facing step. J. Fluid Mech. 473, 167–189.

Chomaz, J.-M. 2005 Global instabilities in spatially developing flows: non-normality and non-
linearity. Annu. Rev. Fluid Mech. 37, 357–392.

Cossu, C. & Chomaz, J.-M. 1997 Global measures of local convective instabilities. Phys. Rev. Lett.
78, 4387–4390.

Edwards, W. S., Tuckerman, L. S., Friesner, R. A. & Sorensen, D. 1994 Krylov methods for the
incompressible Navier-Stokes equations. J. Comput. Phys. 110, 82–102.

Gaster, M. 1962 A note on the relation between temporally increasing and spatially increasing
disturbances in hydrodynamic stability. J. Fluid Mech. 14, 222–224.

Huerre, P. & Monkewitz, P. 1990 Local and global instabilities in spatially developing flows. Annu.
Rev. Fluid Mech. 22, 473–537.

Lin, R. S. & Malik, M. R. 1997 On the stability of attachment-line boundary layers. Part 2. The
effect of leading edge curvature. J. Fluid Mech. 333, 125–137.

Marquillie, M. & Ehrenstein, U. 2003 On the onset of nonlinear oscillations in a separating
boundary-layer flow. J. Fluid Mech. 490, 169–188.

Nayar, M. & Ortega, U. 1993 Computation of selected eigenvalues of generalized eigenvalues
problems. J. Comput. Phys. 108, 8–14.

Peyret, R. 2002 Spectral Methods for Incompressible Viscous Flow. Springer.

Schmid, P. J. & Henningson, D. S. 2001 Stability and Transition in Shear Flows. Springer.

Schmid, P. J. & Henningson, D. S. 2002 On the stability of a falling liquid curtain. J. Fluid Mech.
463, 163–171.

Theofilis, V. 2003 Advances in global linear instability of nonparallel and three-dimensional flows.
Prog. Aerospace Sci. 39, 249–315.

Theofilis V., Hein, S. & Dallmann, U. 2000 On the origins of unsteadiness and three-dimensionality
in a laminar separation bubble. Phil. Trans. R. Soc. Lond. A 358, 3229–3246.


